
Oracle ADF On-Ramp:
Developing Applications
With the Core ADF Stack

Peter Koletzke
Technical Director & Principal Instructor

The white paper
follows these slides
in this same file.

Note: These slides are an expanded version of the
slides presented at the conference.

2

Survey
• Job responsibilities?

– DBA, developer
• Languages?

– PL/SQL, Java
– Other

• Tools?
– APEX
– Developer Forms/Reports
– JDeveloper
– Eclipse, NetBeans
– Other

3

Agenda

• What is ADF?

• ADF Business Services

• ADF Model, View, and Controller

Slides and white paper are
be available on the OOW
and Quovera websites.

Screenshots are
11g unless
marked as 12c

4

On the Positive Side…
If we do not find

anything pleasant, at least
we shall find something new.

—Voltaire (1694-1778), Candide

Si nous ne trouvons pas des choses
agréables, nous trouverons du
moins des choses nouvelles.

5

Oracle Application Development
Framework (ADF)

• A framework is a prebuilt service for solving a
particular problem – like access to the
database
– Code libraries and standards support the framework
– Implements code reuse and best practices
– An architecture with code libraries

• ADF is a meta-framework
– A wrapper for other frameworks, JDev 10g and later
– Provides a consistent developer experience

• Based on Model-View-Controller
design pattern (SmallTalk, Java EE)

Controller

Model

Struts

ADF Bindings

ADF Data Controls

ADF Architecture

Business Services
ADF Business
Components

EJB Session
Beans

Web
Services

Java
Classes

JSF

Essbase

ADF
Controller

View

ADF Mobile

ADF JClient

ADFdi (Excel)

Web Client

ADF Faces RCJSP

JSF

Application Client

7

Which ADF Technologies to Use?
• An example: Fusion Applications (Oracle

applications suite)
• Core technology stack used for Fusion Apps is:

– ADF Business Components
– ADF Faces Rich Client
– ADF Model
– ADF Controller

• Other high-level technologies
or strategies also used
– SOA, ESB, Business Rules,

WebCenter, BPM, BPA, BAM
– Need to consider those, too,

at the architectural level
Out of
scope

8

ADF Essentials
• No-license-fee version of ADF

– Runs on the public domain app server,
Glassfish, not WebLogic Server

• Works in JDeveloper
• Works in Eclipse

– Through Oracle Enterprise Pack for
Eclipse

• More information on OTN
– www.oracle.com/technetwork/developer-

tools/adf/overview/adfessentialsfaq-1837249.pdf

9

Mobile Application Framework
• Similar ADF principles and development

methods
– Business services
– Pages (features) with components
– Task flows

• Supports iOS and Android
• Use local services like camera & contacts
• OTN demo video and ADF Academy video
www.oracle.com/technetwork/developer-tools/maf

10

Where Do The Core Technologies
End Up?

Departments

ADF
BC

ADF
Faces

ADF
Controller Employees

Database access
& SOA endpoints

Page flow and task flow

UI rendering

ADF
Model

Binding data
to items

Demo

11

Which Languages Do You Use?
1. Java

– All important programmatic code
– Think “trigger code” as in Oracle Forms

2. XML
– The components rely on XML

• Property editors create it for you
3. JavaScript and Cascading Style Sheets

– Add functionality to HTML pages
– Usually the components do this work for you

4. Expression Language
– Used in JSF binding properties

5. Groovy
– ADF BC scripting

HTML

and
SQL!

How Much of Each Do You Use?
Language (Use) Level

Needed
Primary Use

Java
(frameworks such as
ADF Faces)

Basic Business components code for validation and
special handling of model objects, as well as coding
conditional page flow.

Java
(extending framework
features)

Expert Supplementing or replacing functionality supplied by
the framework. This requires research into the
framework’s capabilities and architecture.

XML Basic The JSF tags and the HTML renderer take care of
the HTML for you. XML is used for JSF JSP files

JavaScript Basic/None Providing customized user interaction functionality,
for example, special handling of a checkbox
selection.

Cascading Style
Sheets

Basic/None Developing skins for a consistent look and feel. If
you use prebuilt look-and-feel templates, no CSS
coding is needed.

Expression Language Basic/
Intermediate

Supplying data to components from properties or
methods in the application.

Groovy Basic Expressions for ADF Business Components

13

Agenda

• What is ADF?

• ADF Business Services

• ADF Model, View, and Controller

14

The World View

In this best of all
possible worlds ...

everything is for the best.

—Voltaire (1694-1778), Candide

Dans ce meilleur
des mondes possibles ...

tout est au mieux.

15

ADF Business Components
• ADF BC: an option in the Business

Services layer of ADF
• Persistence: storing data in a database
• O/R mapping: Translates relational

database thingies to object-oriented (Java)
whatsits

• Handles JDBC mechanics
– Creates SQL and handles results

• Primarily declarative
– XML source code to define the

use of framework classes

16

More About ADF BC

• Various component types, e.g.,
– View objects: define queries
– Entity objects: define insert-update-

delete (“DML”)
– View links: view object relationships
– Associations: entity object links
– Application modules: Define the data

models and the database transaction
• It does not create user interfaces

Sample ADF BC Development

Entity object editors Demo
18

View Object Code

<ViewObject
xmlns="http://xmlns.oracle.com/bc4j"
Name="AllEmployees"
Version="11.1.1.53.41"
SelectList="Employees.EMPLOYEE_ID,

Employees.FIRST_NAME,
Employees.LAST_NAME,
Employees.JOB_ID,
Employees.EMAIL,
Employees.HIRE_DATE,
Departments.DEPARTMENT_NAME,
Departments.DEPARTMENT_ID,
Departments.LOCATION_ID"

FromList="DEPARTMENTS Departments, EMPLOYEES Employees"
Where="Departments.MANAGER_ID = Employees.EMPLOYEE_ID"
BindingStyle="OracleName"
CustomQuery="false"
PageIterMode="Full"
UseGlueCode="false">
...

<Attribute
Name="EmployeeId"
IsNotNull="true"
Precision="6"
Scale="0"
ColumnName="EMPLOYEE_ID"
SQLType="NUMERIC"

Type="oracle.jbo.domain.Number"
ColumnType="NUMBER"
TableName="EMPLOYEES"
PrimaryKey="true">
<DesignTime>

<Attr Name="_DisplaySize" Value="22"/>
</DesignTime>

</Attribute>
<Attribute

Name="FirstName"
Precision="20"
ColumnName="FIRST_NAME"

...

View Object = SELECT statement View Attribute = Column in query

19

List-of-Values (LOV)
• Defined for an view object attribute
• Associate a query (view object) with the

attribute
• Set up is declarative

– Start in the view object editor
• UI code will display this attribute

specially
– Pulldown list item loaded with values
– Popup list-of-values dialog

20

VO Editor – LOV Subtab

21

Create List of Values

At runtime

22

View Criteria
• Used for queries
• View Object

Editor
– 11g Query page
– 12c VC page

• View Criteria
dialog
– Defines the

WHERE clause
declaratively

– Bind variables
are optional

23

View Criteria in the DCP
• Data Controls panel lists

the defined criteria
• You can drag and drop

a view criteria onto
a JSF page

• Components are added for each
attribute in the view criteria

24

Declarative Validation Rules
• Simple rules written on the entity object
• Method 1

– Attributes tab
– Validation

Rules subtab
• Method 2

– Business
Rules tab

– Attribute or
entity level

25

Declarative Validation Benefits
• Quick validation on the app server side
• No Java coding!
• Add a friendlier message for ADF BC-level

errors (e.g., length)
• Messages stored in a message bundle file

that you can internationalize
• All UIs built from the entity object will contain

the same validation
– Like a trigger in the database

• You need to decide where to place
business rules code

26

UI Hints
• A.k.a., control hints
• UI definitions stored in the entity object

or view object definitions
– Universal to all UIs created from those EOs

or VOs
– Provides consistency
– “Set it and forget it”

• Can put the hints on either EO or VO
– Rule of thumb: use the entity object

UI hints whenever possible
– Override on view object level if

needed

27

Setting UI Hints
• In Entity Object editor, select attribute

and click the UI Hints tab in the Property
Inspector

• OR View
Object editor
Attributes
tab, UI Hints
subtab

28

Agenda

• What is ADF?

• ADF Business Services

• ADF View, Model, and ControllerView,

29

ADF Faces Rich Client Overview

Really
rich!

• Fits into the View layer of ADF
• History:

– ADF UIX  ADF Faces  Apache Trinidad
– ADF Faces  ADF Faces RC

• Built on top of JSF APIs
• Deployable on any 1.2 implementation of JSF
• Support for pop-ups and dialogs
• ADF model support out-of-the-box
• Data Visualization Tools (DVT)

components
– Charts, Gantt, Pivot, Maps, Hierarchy

30

ADF Faces RC Features
• Changeable “skins”

– Common look-and-feel characteristics
– Skin editor in JDev 11.1.2 and beyond

• Layout management features
• Extensive set of properties

– Declarative access to application metadata
– Properties can reference dynamic values using

Expression Language
• Template support
• Declarative AJAX

– Property-driven

31

Some Components
af:inputText

af:inputDate

af:button

af:commandMenuItem

af:link (with icon)

af:selectOneChoice

af:selectBooleanCheckbox

af:inputListOfValues

32

Sample ADF Faces Development

Demo

33

ADF Faces JSF Snippet
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"

xmlns:f="http://java.sun.com/jsf/core"
xmlns:af="http://xmlns.oracle.com/adf/faces/rich">

...
<af:panelStretchLayout styleClass="AFVisualRoot" topHeight="105px"

bottomHeight="20px">
<f:facet name="top">
<af:panelBorderLayout>
<f:facet name="start">
<af:image source="/images/tuhra.gif" shortDesc="TUHRA Logo"/>

</f:facet>
<f:facet name="end">
<af:panelGroupLayout layout="horizontal" halign="right"

valign="bottom">
<af:commandImageLink text="Logon" shortDesc="Logout from TUHRA"

depressedIcon="/images/groupdisconnect_dwn.png"
disabledIcon="/images/groupdisconnect_dis.png"
hoverIcon="/images/groupdisconnect_ovr.png"
icon="/images/groupdisconnect_ena.png"
disabled="true"
rendered="#{attrs.anonymous}"/>

<af:commandImageLink text="Logoff" shortDesc="Logout from TUHRA"
depressedIcon="/images/groupdisconnect_dwn.png"
disabledIcon="/images/groupdisconnect_dis.png"
hoverIcon="/images/groupdisconnect_ovr.png"
icon="/images/groupdisconnect_ena.png"
disabled="true“
rendered="#{!attrs.anonymous}"/>

34

Agenda

• What is ADF?

• ADF Business Services

• ADF View, Model, and ControllerModel,

35

ADF Model
• ADF Data Controls

– Provides list of components
or groups of components for
a node in the data model

– “Drop as” options
• ADF Bindings

– Prebuilt connection from
the ADF BC to the UI

– Drag and drop action
above does the work

36

ADF Data Controls
• Business Services abstraction

– Makes Model components available to
ViewController

– Automatically created with ADF BC
– Can be created for other business services
– For non-ADF BC, defined in DataControls.cpx

• Provide list of “Drop as” options that create
pre-bound components
– Collection level (view object instance)
– Attribute level (view attribute)

The Good News:
You don’t

normally write
data controls

37

Collection “Drop As” Options

38

ADF Bindings
• Association of a business service data

element or action with a UI component
– Relatively automatic in Oracle Forms
– Definitely not automatic in native Java EE

• Binding normally takes a lot of coding
– One-off solution is not the answer
– Need a framework to assist

Database

EMPLOYEES

ADF Business Components

Employees
• ID
• FirstName
• LastName

Data
Bindings

Susan

User Interface

39

Drop As Examples: Form and Table

Note the binding
expressions

Demo

40

Editing Bindings
Link to

PageDef file

41

Binding Code

<af:inputText value="#{bindings.DepartmentId.inputValue}"
label="#{bindings.DepartmentId.hints.label}"

required="#{bindings.DepartmentId.hints.mandatory}"
columns="#{bindings.DepartmentId.hints.displayWidth}"
maximumLength="#{bindings.DepartmentId.hints.precision}"
shortDesc="#{bindings.DepartmentId.hints.tooltip}"

id="it1">
</af:inputText>

<bindings>
<attributeValues IterBinding="DepartmentsView1Iterator"

id="DepartmentId">
<AttrNames>

<Item Value="DepartmentId"/>
</AttrNames>

</attributeValues>

JSF Page Snippet

Bindings (PageDef) Snippet

42

Agenda

• What is ADF?

• ADF Business Services

• ADF View, Model, and ControllerController

43

ADF Controller (ADFc)
• Extension to standard JSF Controller functionality
• Defines task flows

– Logic and page fragment components
– Embedded on the page in a region component

• Benefits
– Page fragment re-use
– Executing code in a logic-defined flow

• “Task flow” not “page flow”
– Security
– Exception handling and transaction

management
• Defined in a diagram

44

Sample ADF Controller
Development

starting point

control flow case
router

exception handler

method

view (page)

Sample ADF Controller Code
<task-flow-definition id="dept-flow"><default-activity>deptBrowse</default-activity><view id="deptBrowse"><page>/deptBrowse.jspx</page></view><view id="deptEdit"><page>/deptEdit.jspx</page></view><control-flow-rule><from-activity-id>deptBrowse</from-activity-id><control-flow-case><from-outcome>toEdit</from-outcome><to-activity-id>deptEdit</to-activity-id></control-flow-case></control-flow-rule><router id="checkForExplicitID"><case id="__6"><expression>#{!empty pageFlowScope.employeeId}</expression><outcome>byId</outcome></case><default-outcome>currentUser</default-outcome></router><method-call id="queryEmployeeById"><method>#{bindings.queryEmployeeById.execute}</method><outcome><fixed-outcome>queryEmployeeById</fixed-outcome> </outcome></method-call>

From
To

Demo
46

Summary: ADF Core Technologies

Departments

ADF
BC

ADF
Faces

ADF
Controller Employees

Database access
& SOA endpoints

Page flow and task flow

UI rendering

ADF
Model

Binding data
to items

47

Shameless Book Plugs

48

Summary
• Oracle is building Fusion Applications with an

ADF core technology stack
• ADF offers a consistent developer

experience regardless of the technologies
• ADF Business Components provide access

to the database and other data sources
• ADF Model connects ADF BC to ADF Faces
• ADF Faces provide 150+, feature-rich item

and container components for JSF pages
• ADF Controller manages page flow

and task flow

49

Final Voltaire Wisdom

The secret of being a bore
is to tell everything.

—Voltaire (1694-1778), Sept
Discours en Vers sur l’Homme

Le secret d'ennuyer
est celui de tout dire.

50www.kscope15.com

TOPICS | Database Development Essbase Planning
Financial Close Application Express Business Intelligence

ADF and Fusion Dev. EPM Business Content EPM Foundations
EPM Data Management EPM Reporting

51

Designer
Handbook
Designer

Handbook

Developer
Advanced
Forms &
Reports

Developer
Advanced
Forms &
Reports

JDeveloper 3
Handbook

JDeveloper 3
Handbook

ORACLE9i
JDeveloper
Handbook

• Founded in 1995 as Millennia Vision
Corp.

• Profitable without outside funding
• Consultants each have 10+ years

industry experience
• Strong High-Tech industry background
• 200+ clients/300+ projects
• JDeveloper Partner
• More technical white papers and

presentations on the web site

www.quovera.com

ORACLE
JDeveloper 10g

Handbook

• Please fill out the evaluation
• Books co-authored with Dr. Paul

Dorsey, Avrom Roy-Faderman, &
Duncan Mills

www.quovera.com 1 Quovera

ORACLE ADF ON-RAMP: DEVELOPING
APPLICATIONS WITH THE CORE ADF STACK
Peter Koletzke, Quovera

Si nous ne trouvons pas des choses agréables,
nous trouverons du moins des choses

nouvelles.

(If we do not find anything pleasant,
at least we shall find something new.)

—Voltaire (1694-1778), Candide (Ch. xvii)

Developing a Java-oriented web application these days is an experience that many Oracle technologists find to be new but
not necessarily very pleasant. Architecting such an application requires selecting a set of technologies from a dauntingly-
large and ever-growing list. Up to now, the responsibility for combining these technologies and ensuring that they
communicate and work together in an orderly way has been left up to each organization. The path of selecting and working
with different Java-oriented frameworks can inevitably lead to wrong turns, especially for those who are new to the Java
world. Depending upon when those wrong turns occur, the effect on the project can range from mild to devastating and will
likely require rewriting some or most of the application.

Fortunately, Oracle has now provided guidance in the form of the set of technologies they have selected to build Fusion
Applications—the new application products (parallel to E-Business Suite). Oracle has chosen open-standards technologies in
the Java realm so parts of the application can be easily extended with little reliance on a specific vendor’s product line,
hardware set, or operating system. (Many other reasons for selecting open standard technologies—such as customer
preferences—exist, but are a larger discussion that is not critical to the focus of this white paper.)

Fusion Technology Stack
Fusion developers within Oracle have been creating Fusion Applications using Application Development Framework (ADF)
in JDeveloper with the following core technologies:

 ADF Business Components (ADF BC)

 ADF Faces Rich Client (ADF Faces RC)

 ADF Bindings and ADF Data Controls

 ADF Controller

In addition to those core technologies, Oracle uses high-level technologies or strategies such as the following to coordinate
Fusion Applications’ components and to fulfill additional architectural requirements:

 Service Oriented Architecture (SOA) with Business Process Execution Language (BPEL)

 Enterprise Service Bus (ESB)

 Oracle Business Rules

 Oracle WebCenter

Since Oracle is using Application Development Framework (ADF)—a facility in JDeveloper for working with code in a
common way—to create Fusion Applications, you can use the term “ADF Fusion Technology Stack” to refer to all
technologies in the core and high-level lists. Packaged application software is a large part of Oracle’s business, and Oracle
has a very compelling business reason to ensure that the technologies used in Fusion Applications will integrate properly and
work successfully. Therefore, you can be relatively assured that you, too, can be successful in creating applications with the
same technologies.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 2 Quovera

Retooling for Fusion Technology Work
Determining the list of technologies that an application will use is not enough. Planning for any application development
effort must also include tasks and strategies for bringing current development staff up to speed on the techniques required for
the new environment. If you determine that your current development staff cannot reach acceptable skill levels in the
available time, you may need to employ additional resources. You will need to understand what tools, development
techniques, and languages a developer needs to learn (for current staff) or to know (for additional resources) to be productive
in the ADF Fusion Technology environment.

The main objective of this white paper is to explain just that—what developers need to know to be productive writing
applications using the ADF Fusion Technology Stack. If you think of Oracle internal developers as drivers already speeding
along on the Fusion Development Highway, this white paper is the on-ramp for others who are not yet on that road but who
need to be there. To extend that analogy a bit, while the exit for Oracle developers is “Oracle Fusion Applications
Production” and yours will be different, all have the same vehicle—ADF in JDeveloper—and type of fuel—the Fusion
Technology Stack.

This white paper starts by explaining some preliminary concepts; then it explains and shows the kinds of code and techniques
needed for productive work in ADF with the core technologies in the Fusion Technology Stack. The goal is to explain the
main development techniques for only the core technology set. The high-level technologies are more strategic systems that
an enterprise architect will select for a particular application. While heads-down developers may need to know about
techniques for the high-level technologies, that type of work will vary depending upon architectural decisions and on the
enterprise’s environment. In fact, the core technology stack may suffice for some applications so no high-level technologies
would be needed at all. The white paper closes by discussing the languages developers use for this type of work.

Note: Although this white paper does not specifically address
techniques required to extend Fusion Applications, if you
currently develop or maintain custom extensions to Oracle
E-Business Suite (Oracle Applications) or think you will find
yourself doing so in the future, you will be using the same
techniques and technologies discussed in this white paper for
that work in Fusion Applications.

What is Fusion?
The word “Fusion” is used these days to refer to almost everything from cars to food to razors to drinks. Therefore, the first
concept to understand is what Oracle means when they use that word. The word “Fusion” is used in various ways within the
Oracle product line, but it generally refers to a strategic reorganization of Oracle products. Oracle invented Oracle Fusion
after acquiring various companies who offered their own application products. Oracle’s objective with Fusion is to merge the
best of all those products into a single (fused) applications suite. This effort will take many years, but Oracle has started this
work and we expect to see the premier version of these application products in the near future.

You can summarize Oracle Fusion with the uses in the following terms:

 Oracle Fusion Applications, mentioned before, is the next version of Oracle E-Business Suite.

 Oracle Fusion Middleware is the toolset that Oracle is using to develop and deploy Fusion Applications. This
toolset consists of virtually all Oracle development and runtime products (except for the Oracle database and Oracle
packaged applications) such as JDeveloper and Oracle WebLogic Server (but not legacy tools such as Oracle Forms
and Reports).

 Oracle Fusion Architecture outlines the way various technologies are used to build the applications. This Fusion
usage is not as frequently used or seen as Oracle Fusion Middleware and Oracle Fusion Applications.

JDeveloper and ADF
JDeveloper 11g is the Fusion Middleware development tool. It is the common tool used for developing all types of code,
regardless of the technology. Moreover, as mentioned, JDeveloper is the container for ADF. Therefore, Oracle is very
focused on enabling JDeveloper 11g to support all requirements of the new Fusion Applications.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 3 Quovera

Although this white paper focusses on JDeveloper as the main tool to use for ADF, Oracle has published ADF Essentials, a
package of no-license-fee ADF technologies that you can also plug into Eclipse through the Oracle Enterprise Pack for
Eclipse. Instead of WebLogic Server, the public domain server Glassfish is used for deployment and runtime of ADF
Essentials. More information is available on the Oracle ADF web pages with a good starting point being the FAQs:
www.oracle.com/technetwork/developer-tools/adf/overview/adfessentialsfaq-1837249.pdf.

What is ADF?
To answer that question, you need to know that the word “framework” in the Java world refers to an application
development technology. A framework is like an Application Programming Interface (API) or a code library in other
disciplines: all offer generically built code that you can use in your application. The code that implements the framework
supplies an entire service that you can access using a certain development method and calling interface. Although APIs and
code libraries may have these characteristics, frameworks are built around the idea of a service. For example, instead of
building from scratch some key facility such as a connection layer to the database, you use an existing framework such as
ADF BC to supply that service.

One reason to use a framework is to tap into a standard way of supplying the functionality of the service to your application.
You do not need to invent a service that you need for a piece of your application. Another related reason is that you do not
need to redevelop code that many applications share. When using a framework, you leverage solid and (hopefully) well-
debugged code in all your applications. In addition, the most popular frameworks offer solid support at least from the user
community, if not from a vendor. The sidebar “Working with Java Frameworks” describes how you use frameworks in your
application code.

Working with Java Frameworks
Framework code in the Java world usually consists of prebuilt Java classes. Those classes offer complete
functionality for a service (like database access). They are set up to read configuration or application-
specific definitions coded inside an Extensible Markup Language (XML) file. Therefore, the primary code
you are responsible for when using a framework is XML-based. A good framework offers enough
flexibility to handle most applications with this type of work. Moreover, developers using frameworks are
most effective when they understand what the framework can accomplish so they can design their
application code to fully leverage the framework.

Occasionally (and if you are using frameworks properly, it should only be occasionally), a developer will
need to replace or add to a part of the service that cannot fulfill an application’s requirement. In this case,
the developer subclasses one or more framework classes and adds some code to customize the framework’s
behavior. This type of work requires intermediate-level knowledge of Java as well as a deep knowledge of
the framework. Therefore, it is a technique to be used sparingly.

So ADF is…
Application Development Framework (ADF) is an architectural strategy within JDeveloper that allows you to build
applications using common declarative and visual methods. For example, you can build database access code into your
application using Enterprise JavaBeans (EJBs), ADF Business Components (ADF BC), or web services (among others). The
code details and libraries that support these frameworks are different, but the actions you use in JDeveloper to create user
interfaces based on these frameworks are the same. ADF, therefore, is really a meta-framework that integrates and offers
common development methods to many other frameworks.

ADF Architecture
The ADF architecture model, depicted in Figure 1, divides the frameworks it supports into various code layers that loosely
follow the Java EE design pattern Model-View-Controller (MVC). MVC defines three main layers of application code:
Model—to manage the data portion of the application, View—to handle drawing the user interface screen, and Controller—
to process user interface events (such as button clicks) and to control page flow (how one page is called from another page).

The ADF architecture layers follow the definition of MVC for the most part, but ADF adds another layer, ADF Business
Services, a spin off from the Model layer. ADF Business Services provides code for accessing data sources such as a
database. Business services are responsible for persistence—the physical storage of data for future retrieval—and object-
relational (OR) mapping—translating storage units such as rows and columns in relational database tables to object-oriented

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 4 Quovera

structures such as arrays of objects with property values. ADF Business Components is a core Fusion technology in this
layer.

The ADF View layer corresponds directly to the MVC View layer. It includes technologies that you use to draw the user
interface. In the case of web client code—application code that is run in a Java runtime on an application server rather than
locally on the desktop (as is application client code)—ADF View supports JavaServer Faces (JSF) and ADF Faces RC, core
Fusion technologies.

The ADF Controller layer, which defines separate frameworks only for web client code, supports popular JSF and Struts
controller frameworks. In addition, it adds an ADF-specific framework—ADF Controller (“ADF Task Flow Controller”) —
that allows you to create and control parts of a page. ADF Controller is a core Fusion technology in this layer.

The ADF Model layer corresponds to part of the MVC Model layer but specifically represents the connection mechanism
from the Business Services layer to the View layer (through the Controller layer). The ADF Model layer is composed of the
following two aspects:

 ADF Bindings This framework (really just an aspect of ADF Model) provides a standard way to access data
values in the ADF Business Services layer from an ADF View user interface component such as a pulldown item.
For example, if you defined a business service item to query the DEPARTMENTS table, you could add an
expression to the Value attribute of a text input item referring to the DEPARTMENT_ID column of the query.
When the screen is drawn, the data would automatically flow from the ADF Business Services object to the text
item in the View layer by using ADF Bindings.

 ADF Data Controls This aspect of ADF Model supplies a list of prebound components based on the data model
(data sources) defined in the ADF Business Services layer. For example, in JDeveloper, you could drag and drop a
node from the Data Controls panel that represents the DEPARTMENTS query onto a JSF page. The IDE will
determine the type of business service (in this case a collection—multiple rows and multiple columns) and will
present a selection menu of different styles of display components (for example, forms, tables, trees, or navigation
buttons). Selecting one of those options causes JDeveloper to lay out the appropriate display on the screen and bind
the items on the screen to the business service.

Using both of those aspects, you do not need to write code to present data (for query and also for insert, update, and delete
operations) in the user interface. Although no Java EE standard exists yet for bindings and data controls, Oracle and other
parties were working on a Java Specification Request (JSR, the process by which a new feature or revision is made to the
Java platform) to include this mechanism in the Java standards. (This JSR was removed in May 2011 but you can review its
history by searching at jcp.org for JSR-227.)

Figure 1. ADF architecture model

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 5 Quovera

You will also notice in Figure 1 that JDeveloper sits to the side of the ADF framework layers because it is the tool you use to
manipulate all ADF technologies.

Dans ce meilleur des mondes possibles ...
tout est au mieux.

(In this best of all possible worlds ...
everything is for the best.)

—Voltaire (1694-1778), Candide (Ch. i)

CORE ADF FUSION TECHNOLOGIES
The easiest way to describe the core ADF Fusion technologies is in the context of a working application. Although the ADF
frameworks have many advanced features, the purpose of this white paper (to understand what you need to know) will be
best served by looking at a simple application (shown in Figure 2) that provides the following basic data handling functions:

1. Querying the DEPARTMENTS table in read-only mode when the page opens.

2. Querying EMPLOYEES table records that are related to the displayed DEPARTMENTS record.

3. Navigating between DEPARTMENTS table records using First, Previous, Next, and Last buttons.

4. Editing the displayed DEPARTMENTS table using a separate page accessed with the Edit Department button.

5. Creating a DEPARTMENTS record using the edit page in Create mode accessed with the New Department button.

Figure 2. Sample application containing basic data handling functions

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 6 Quovera

This application uses basic examples of these core Fusion technologies:

 ADF Business Components for ADF Business Services layer functions that access the database.

 ADF Faces Rich Client for ADF View layer functions that render the user interface in the web browser

 ADF Bindings and ADF Data Controls for ADF Model layer functions that connect database data to components
on the web page

 ADF Controller for Controller layer functions that manage page flow and handle user event interactions

Let’s see where those technologies are used in this sample application.

ADF Business Components
This application queries and updates data in an Oracle database. ADF Business Components (ADF BC) is the framework
from the ADF Business Services layer used to perform the database-specific operations. For example, a representation of the
DEPARTMENTS table is defined in an ADF BC entity object. You work with the entity object code in a declarative way.
When you create an entity object, you follow a set of wizard pages. To change the entity object you would interact with a
property editor such as the following for the Departments entity object:

Entity objects contain attributes that represent columns in the database table or view. The Attributes tab in the Entity Object
Editor just shown allows you to modify the details about a specific entity attribute. Figure 3 shows an example of that screen.

Each attribute defines a Java field (for example, DepartmentId with a Java type of Number and a SQL type of
NUMBER(4,0)) that ADF BC will use to prepare INSERT, UPDATE, and DELETE statements based on instructions issued
through the user interface. These SQL statements are then passed to the database through Java Database Connectivity
(JDBC) communication paths. All of the code that handles the JDBC calls as well as the code to create the SQL statements
are provided by ADF BC. All you need do is declare at which table and columns the ADF BC framework should target.

The entity object wizard pages and property editor screens create XML code that is read by the framework files. The
following code listing is a snippet from Departments.xml, the entity object definition file for the DEPARTMENTS table:

<Entity
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Departments"
 Version="11.1.1.53.41"
 DBObjectType="table"
 DBObjectName="DEPARTMENTS"
 AliasName="Departments"

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 7 Quovera

 BindingStyle="OracleName"
 UseGlueCode="false">
 <DesignTime>
 <Attr Name="_codeGenFlag2" Value="Access"/>
 <AttrArray Name="_publishEvents"/>
 </DesignTime>
 <Attribute
 Name="DepartmentId"
 IsNotNull="true"
 Precision="4"
 Scale="0"
 ColumnName="DEPARTMENT_ID"
 SQLType="NUMERIC"
 Type="oracle.jbo.domain.Number"
 ColumnType="NUMBER"
 TableName="DEPARTMENTS"
 PrimaryKey="true">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="22"/>
 </DesignTime>
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="hr.model.Departments.DepartmentId_LABEL"/>
 </SchemaBasedProperties>
 </Properties>
 </Attribute>

This snippet shows how the entity object is declared and associated with the DEPARTMENTS table; it also sets up the
DepartmentId attribute based on the DEPARTMENT_ID column. Similar definitions appear for other attributes in the entity
object. When you change the entity object properties, the XML code is modified appropriately. Therefore, you do not need to
modify (or even look at) entity object XML code.

Note: This declarative style of programming is found
throughout work in JDeveloper and is a core strength of ADF.

Figure 3. Attributes page of the Entity Object Editor

Just as entity objects supply INSERT, UPDATE, and DELETE operations, view objects represent SELECT statements. View
objects can be based on one or more entity objects, which then supply details about the table and columns, or on SELECT
statements. You create and edit view objects in the same declarative way as entity objects. An XML code snippet for a view
object follows.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 8 Quovera

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="AllEmployees"
 Version="11.1.1.53.41"
 SelectList="Employees.EMPLOYEE_ID,
 Employees.FIRST_NAME,
 Employees.LAST_NAME,
 Employees.JOB_ID,
 Employees.EMAIL,
 Employees.HIRE_DATE,
 Departments.DEPARTMENT_NAME,
 Departments.DEPARTMENT_ID,
 Departments.LOCATION_ID"
 FromList="DEPARTMENTS Departments, EMPLOYEES Employees"
 Where="Departments.MANAGER_ID = Employees.EMPLOYEE_ID"
 BindingStyle="OracleName"
 CustomQuery="false"
 PageIterMode="Full"
 UseGlueCode="false">
 ...
 <ViewAttribute
 Name="EmployeeId"
 IsUpdateable="false"
 IsNotNull="true"
 PrecisionRule="true"
 EntityAttrName="EmployeeId"
 EntityUsage="Employees"
 AliasName="EMPLOYEE_ID"/>

This view object is based on two entity objects, Employees and Departments; in the view object’s XML you will find clauses
used to construct a SELECT statement from those two tables. You can also read this query more directly in the view object
editor as shown here:

The Bind Variables section of the editor just shown allows you to create variables that you work into the query so you can
filter rows by values supplied by the application or by the user.

You can also create view links that represent foreign key constraints, master-detail relationships, or other logical attribute
pairs that relate one view object to another. In the sample application, a view link is defined between the DepartmentsView
and EmployeesView view objects so when a department record is displayed, the employees for that department will be
displayed. ADF BC automatically handles the master-detail synchronization if you define a view link.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 9 Quovera

ADF Controller
The JavaServer Faces standard of the Java Enterprise Edition platform specifications defines Controller functionality, which
manages page flow (which page is loaded) as well handling user events (for example, by passing data from the Model layer
to the View layer). ADF supplements the standard JSF Controller with the ADF Controller framework (also called “ADF
Task Flow Controller”), which adds the ability to handle page fragments (parts of pages).

This ability has the following advantages over the standard JSF Controller:

 Page fragment processing can be faster (because fewer components are rerendered)

 Fragments can be reused more easily than full pages

 Additional functions or logic can be added into the flow between pages

 Flows between pages can be reused in different parts of the application.

The sample application does not specifically demonstrate page fragments; instead, as a simpler example, it shows a more
standard set of two full pages: browse and edit. Navigating from one to the other is handled by the Controller as is the
activity triggered by button clicks—for example, the Next and Previous buttons. Defining page flow is easiest using the
diagrammer shown in Figure 4. You first create an ADF Controller file, and then drop View (page) and Control Flow Case
(flow) components onto it. You then name all objects so you can refer to them in code later on. As with ADF BC, when you
interact with the diagram editor, JDeveloper creates XML code such as the following:

 <task-flow-definition id="dept-flow">
 <default-activity>deptBrowse</default-activity>
 <view id="deptBrowse">
 <page>/deptBrowse.jspx</page>
 </view>
 <view id="deptEdit">
 <page>/deptEdit.jspx</page>
 </view>
 <control-flow-rule>
 <from-activity-id>deptBrowse</from-activity-id>
 <control-flow-case>
 <from-outcome>toEdit</from-outcome>
 <to-activity-id>deptEdit</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
 <control-flow-rule>
 <from-activity-id>deptEdit</from-activity-id>
 <control-flow-case>
 <from-outcome>toBrowse</from-outcome>
 <to-activity-id>deptBrowse</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
 </task-flow-definition>

After you set up a JSF page file, you can drop components such as buttons into the page. The button component’s Action
property can refer directly to the name of the control flow case. For example, the sample application’s Edit Department
button is defined in the JSF page using the following code:

<af:commandButton text="Edit Department" id="cb2" action="toEdit"/>
When the user clicks this button, the Controller finds the definition of the toEdit action in the task flow file. This code (listed
earlier) declares that the flow toEdit defined in the from-outcome tag will load the deptEdit activity (in this case, a JSF page).
The Browse Departments button on the edit page reverses this navigation using the toBrowse flow.

Note: With ADF Controller, as well as with ADF BC, you can
always write Java code to supplement or replace
functionality. However, the more functionality you can define
declaratively, the more you will be using the power of these
frameworks.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 10 Quovera

Figure 4. Task Flow Diagram

ADF Faces Rich Client
The ADF View layer constructs the user interface. In the case of a web application, the user interface is rendered in a
Hypertext Markup Language (HTML) browser. Native HTML items such as text input items, buttons, selection lists, and
radio buttons are limited in functionality. JSF defines higher-level items (called “components”) that add functionality to
HTML. ADF Faces Rich Client (available in JDeveloper 11g and abbreviated hereafter as “ADF Faces”) is a set of JSF
components with “rich” functionality. For example, ADF Faces offers a component called af:table (ADF Faces
components are prefixed with “af” denoting the tag library in which they are found) that represents an HTML table in a web
browser. Combining af:table with one or more af:column components allows you to define an entire HTML table without
writing HTML. Here is a snippet of code for the Employees read-only table in the sample application:

<af:table value="#{bindings.EmployeesView3.collectionModel}" var="row"
 rows="#{bindings.EmployeesView3.rangeSize}"
 emptyText="#{bindings.EmployeesView3.viewable ? 'No data to display.' : 'Access Denied.'}"
 fetchSize="#{bindings.EmployeesView3.rangeSize}"
 rowBandingInterval="0"
 selectedRowKeys="#{bindings.EmployeesView3.collectionModel.selectedRow}"
 selectionListener="#{bindings.EmployeesView3.collectionModel.makeCurrent}"
 rowSelection="single" id="t1" inlineStyle="width:100.0%;">
 <af:column sortProperty="EmployeeId" sortable="true"
 headerText="#{bindings.EmployeesView3.hints.EmployeeId.label}"
 id="c2">
 <af:outputText value="#{row.EmployeeId}" id="ot6">
 </af:column>
 <af:column sortProperty="FirstName" sortable="true"
 headerText="#{bindings.EmployeesView3.hints.FirstName.label}"
 id="c5">
 <af:outputText value="#{row.FirstName}" id="ot7"/>
 </af:column>
...
</af:table>

Notice that, like the Business Services and Controller layer code, ADF Faces is also XML code consisting of elements
(“components” in ADF Faces) and attributes (“properties” in ADF Faces). The power of ADF Faces is in the flexibility of
the component properties. In this sample code listing, the value property of af:table connects the table component to a data
source (EmployeesView3 in this case—an instance of the EmployeesView view object) and assigns a variable name (called
“row”) to each record in the result set of that view object. Nested within the af:table component are two af:column
components—representing the EmployeeId and FirstName attributes. Within each column component is an af:outputText
(read-only text) component whose value property identifies the table data element within a single record (using the variable
“row”) that will be displayed in the HTML table cell. The af:table component is responsible for iterating rows
appropriately for the data set.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 11 Quovera

Note: As discussed more in the next section of this white
paper, the “bindings” reference in the af:table component’s
value property points to the page binding, which connects the
ADF BC objects to the components on the page.

Although the af:table code in the preceding snippet is functional code (many properties are defaulted and properties with
default values are not represented in code) many more properties are available. Figure 5 shows JDeveloper’s Property
Inspector (the default property editor for most XML files) displaying the complete set of properties for af:table. (This
display spreads across three columns although JDeveloper shows all properties in a single column.) You can zoom in for a
closer look at individual property names, but the main point is that this component offers a lot of options for modifying its
behavior or appearance. Some properties are data-oriented as just explained but some supply user-friendly features such as
the following:

 rowSelection Setting this property to “single” will allow the user to select a row at runtime (by clicking it). The
selected row can then be processed in a way you define (for example, to display a popup showing more detail). You
can also define the ability to select multiple rows.

 rowBandingInterval Setting this property to “1” will shade every other row in the table to make rows visually
easier to follow across a wide display

 filterVisible If you set this property to “true,” the table component will display input fields above each column
heading. The user can type a value into one or more of these fields and the displayed rows will be filtered by the
entered values.

Figure 5. Property Inspector view of the af:table properties

Declarative AJAX
The recent movement to make web applications more interactive has led to acceptance and wide use of Asynchronous
JavaScript and XML (AJAX). AJAX (sometimes spelled as “Ajax”) consists of a number of technologies that have existed for
some time (such as JavaScript and XML); it allows you to write code that refreshes only part of the page instead of the entire
page. This enhances the user experience because the user does not need to wait for the entire page to redraw after clicking a
button or link, changing a data value, or interacting with the page in some other way.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 12 Quovera

ADF Faces components are written with embedded AJAX features. For example, in the preceding code listing, the sortable
property of the af:column components are set to “true.” This sets up functionality that if the user clicks a column heading the
rows displayed will be sorted based on the values in that column. Clicking the same column heading again reverses the sort.
As the table is redrawn to display the rows in a different order, the rest of the page stays in place. That is, only the table
contents are redrawn. This partial page drawing uses AJAX technology.

AJAX is built into the ADF Faces components so you do not need to write any JavaScript or XML code to cause the partial
page redraw. However, with a small handful of properties, you can write your own partial page events, again without writing
AJAX code. For example, by declaring property values for Price, Quantity, and Line Total fields, you can cause a refresh of
the Line Total field when the user changes either Price or Quantity fields. The rest of the page would remain static. Only the
value in the Line Total field would change when Prince or Quantity changes.

Note: AJAX within ADF Faces is more properly called “Partial
Page Rendering” (PPR), which specifically refers to the
capability to define AJAX functionality by just declaring
property values.

Visual Editor
In addition to the Property Inspector and source code view of the ADF Faces components in JSF file, you can view the
components in a visual editor that emulates the component runtime. Figure 6 shows the Departments browse page as it
appears in the visual editor.

This tool supports drag-and-drop actions for repositioning components. Changes you make in the visual editor are reflected
in the source code just as changes you make in Task Flow Diagram are reflected in the controller source code. As an ADF
application developer, you create code in any way that is most efficient and intuitive. For example, it is probably easier to
reposition buttons by dragging and dropping them in the visual editor rather than reordering lines of code in the source code
editor.

Figure 6. JDeveloper visual editor display of the Departments browse page

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 13 Quovera

In addition to the visual editor, you can interact with ADF Faces source code (as well as most other types of code) using the
Structure window, shown here:

This window displays the hierarchy of ADF Faces and JSF component tags and allows repositioning them using
drag-and-drop operations. In addition, you can select, delete, and copy nodes in this window to change the source code. The
right-click menu on any node allows you to add components above, below, or inside that component. Errors and warnings
are summarized at the top of this view and double clicking an error will open the source code editor to the problem line of
code.

Although the sample application displays relatively standard interface components, ADF Faces offers nearly 150 components
that you can use to create virtually any user interface you can envision. In addition to simple user input items—for example,
text items and pulldowns—ADF Faces also supplies more complex input items such as a date input item with calendar
popup, a shuttle control that serves as a multiple selection list, and a full-featured calendar widget. It also provides layout
components that allow you to manage the relative positioning of components. In addition, a separate set of ADF Faces
components called Data Visualization Tools (DVT) provides highly-interactive, Web 2.0, Flash-aware components such as
graph, chart, gauge, hierarchy viewer, Gantt chart, map, and pivot table.

Le superflu, chose très nécessaire.

(The superfluous, a very necessary thing.)

—Voltaire (1694-1778), Le Mondian

ADF Bindings and ADF Data Controls
The Model layer in ADF is composed of two aspects—ADF Data Controls and ADF Bindings. These frameworks link the
database components written in ADF BC to user interface components (through the management of pages in the Controller
layer). Wiring user interface components to database objects is relatively easy with these two technologies.

The story of how these ADF Model layer technologies work starts back in the ADF Business Services layer. An ADF BC
component, the application module, manages database transactions (COMMIT and ROLLBACK) and defines the data

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 14 Quovera

model, a list of view objects and view links that the application uses. The data model is depicted within the Application
Module Editor as a hierarchy as shown here:

The Data Model area in this example defines view objects for DepartmentsView with a detail of EmployeesView (the suffix
numbers indicate distinct usages of the view objects in the data model) linked through a view link. A master-level instance of
JobsView and LocationsView (used to supply unfiltered data for pulldowns or LOVs) is also part of this data model. This
data model is defined completely within the ADF Business Components application module in the Business Services layer.

Returning to the Model layer, whenever you create a JSF page or page fragment, the Data Controls
panel in the JDeveloper navigator will display the ADF BC application module’s data model nodes as
shown on the right. Additional nodes appear under each view object for attributes (for example,
DepartmentId under DepartmentsView1), Operations (that provide actions you can take on the data
collection, such as navigating the current record to the Next, Previous, First, or Last record in the set),
and Named Criteria (which define which fields will be available for queries using search forms).

An almost magical thing occurs when you drag one of these nodes onto a JSF page or page fragment.
For example, to build the sample application, the DepartmentsView1 node was dragged from the Data

Controls panel and dropped onto the JSF page.
The ADF Data Controls framework determines
that the node is a collection-level (table-level)
item and displays a menu of applicable
components or component combinations as shown
on the left with the Forms menu expanded.

In the sample application, selecting ADF Read-only Form caused
JDeveloper to create a display containing labeled fields with navigation
buttons at the top of the Departments browse page. This drag-and-drop-
and-select action interacts with the ADF Data Controls list. If an
individual attribute node (such as DepartmentId) is dragged instead, a
list of data controls appropriate to a single data value (for example,
input text items, output items, and pulldowns) will display instead.

In addition to drawing user interface components on the screen, the
drag-and-drop operation also creates bindings for those components.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 15 Quovera

Bindings are code or definitions that declare which data from a business service will be connected to a user interface control
or structure. Bindings appear in the ADF Faces’ property values. The following example is an ADF Faces input text
component from the Edit Department page:

<af:inputText value="#{bindings.DepartmentId.inputValue}"
 label="#{bindings.DepartmentId.hints.label}"
 required="#{bindings.DepartmentId.hints.mandatory}"
 columns="#{bindings.DepartmentId.hints.displayWidth}"
 maximumLength="#{bindings.DepartmentId.hints.precision}"
 shortDesc="#{bindings.DepartmentId.hints.tooltip}"
 id="it1">
</af:inputText>

All of this code was created by the Data Controls panel drag-and-drop operation. This is one of the main advantages of the
Data Controls panel: it builds all the property values for you and automatically binds the components to data. The property
values defined using the “#{ }” delimiters are Expression Language expressions. Expression Language (EL) is a high-level,
non-procedural language specified in the JavaServer Pages standards. It is used within JSF pages to refer to potentially
dynamic sources of data that will supply property values at runtime.

In this case, all EL expressions begin with “bindings,” which is the context for the values. This context refers to a PageDef
(Page Definition bindings) file that JDeveloper creates for each JSF page. You can view the bindings in this file using the
Bindings viewer for the page as shown here:

If you need to look at or manipulate the bindings code, you click the link next to the Page
Definition File label to open the PageDef file—the container for the bindings definitions. The
Structure window view of this page is shown on the right.

You will see an executables section for the queries (iterators) that occur when the page opens.
You will also see a bindings section for the objects that refer to view object attributes. By now,
you will not be surprised that JDeveloper creates XML code to define bindings; you will rarely
need to touch this code. Here is a code snippet from the deptEditPageDef.xml file:

<bindings>
 <attributeValues IterBinding="DepartmentsView1Iterator"
 id="DepartmentId">
 <AttrNames>
 <Item Value="DepartmentId"/>
 </AttrNames>
 </attributeValues>

This file is processed by the ADF Bindings framework code and links the attribute, DepartmentId, to the iterator,
DepartmentsView1Iterator. That iterator is defined for the DepartmentsView1 view object instance in the data model, and
therefore represents a query of data. The EL bindings expressions in the ADF Faces component code point to this
communication path and therefore to data. The EL expressions also further drill into a specific property of the ADF BC view
attribute; for example, the label property of the example component is defined as "#{bindings.DepartmentId.hints.label},”
which refers to the label property of the view attribute (in the hints property category). If no label property is defined, the
default label is the attribute name.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 16 Quovera

Which Languages Are Important?
Now that you have sampled some ADF techniques for working with each of the core technologies, you know that
JDeveloper creates a lot of application code automatically when you interact with its visual and declarative tools. However,
you may still be wondering about which languages you will use when you need to supplement this code. First, remember that
ADF was created as a visual and declarative environment to interact with many frameworks. Therefore, a key skill is
knowing how to squeeze the most functionality out of the technologies by just defining property values and laying out
components visually. The less code you need to write, the less code you need to debug.

With the goal of “declarative if at all possible” in mind, you can be quite productive without writing much code. However,
you will come to a point where writing code is necessary and you will be using a combination of languages. The following
list summarizes the main languages you need to know and how you will use them:

 XML As you have seen, work with frameworks makes heavy use of XML code. However, you work with most
XML code in JDeveloper using declarative and visual tools. You will rarely need to type XML elements and
attributes in these files, but the level of skill you will need at that time is very basic. You mainly need to know three
things about XML: elements need ending tags; elements have attributes that refine the element’s use; and elements
can be nested within elements to create an element hierarchy.

 Java You will write snippets of Java inside ADF BC classes and View layer code to perform customized tasks
that the frameworks cannot provide. You can be quite productive in the ADF Fusion Technology Stack with a
novice level knowledge of Java if you have someone on your team who understands Java at an expert level. This
person can step in to assist if you run into a requirement that cannot be handled with a basic knowledge of Java.

 HTML For best use of JSF and ADF Faces concepts, you will avoid writing HTML code. Instead, you use high-
level components that generate HTML for you.

 Cascading Style Sheets (CSS) ADF Faces components use CSS styles defined in a skin, a set of style selectors
that provide a common look-and-feel to all your pages. You will use CSS to define the skin at the start of the first
ADF application project, but will not need it much after that because you will apply the same skin to all applications
in your organization.

 JavaScript ADF Faces components use JavaScript internally to provide user-friendly features such as refreshing
part of a page when scrolling to the next set of records. You will usually not need to write JavaScript or AJAX code
because the components provide many of the features you would normally need other languages to supply and allow
you to declare AJAX functionality using only property values.

 Expression Language EL is used to supply dynamic values to JSF components’ properties. The main learning
curve for EL is in knowing how to start to build the correct expression. Fortunately, JDeveloper can assist. In the
pulldown for most properties is an item for “Expression Builder.” This selection displays a navigator that helps you
create properly formatted EL expressions. It is a good learning tool as well as a way to enter proper EL.

 Groovy ADF Business Components allow you to write validation and message code using this language. As with
EL, Groovy is used at a very basic level and understanding a few fundamentals as explained in the JDeveloper
online help system will suffice.

Additional Resources
The intention of this white paper is to get you started thinking about ADF, Fusion, and techniques you will be using in
JDeveloper to build web applications. The main source of all things ADF is the JDeveloper home page on Oracle
Technology Network (www.oracle.com/technology/products/jdev/). Follow the links on that page to access tutorials and
articles about specific techniques. In addition, the “Learn More” tab on that page currently displays a “Learn More About”
link to information about ADF. The Technical Resources section contains links for Developer Guides; the “Fusion
Developer’s Guide” is a good starting point for a wealth of technical detail about ADF. This Oracle website guide is linked
to within the JDeveloper help system as well.

Speaking of the help system (technically called the “Help Center”), the Help menu contains link to Tutorials (v.11.1.2) or
Cue Cards (11.1.1), which step you through creating a specific type of code and are especially helpful when learning ADF.
Another extremely useful Oracle resource can help in learning about ADF Faces RC components: the ADF Faces Rich Client
Components Hosted Demo (available at jdevadf.oracle.com/). This demo shows all ADF Faces components and allows you
to change properties to see how they work.

ADF On-Ramp: Developing With… Koletzke

www.quovera.com 17 Quovera

Le secret d'ennuyer est celui de tout dire.

(The secret of being a bore is to tell everything.)

—Voltaire (1694-1778), Sept Discours en Vers sur l’Homme

CONCLUSION
Admittedly, this is a lot of information but, hopefully, you now have a better idea about Oracle Fusion and ADF as well as
about the basics about each of the core technologies in the ADF Fusion Technology Stack: ADF BC, ADF Controller, ADF
Faces RC, and ADF Model: Bindings and Data Controls. This white paper has shown the type of code you will be creating
and the style of development work you will be performing to create that code in each of these technologies. This overview
information should help in your understanding of what you need to know to be productive with ADF and Fusion
technologies and to start up the on-ramp to the Fusion Development Highway.

May that road rise up to meet you!

Il faut cultiver notre jardin.

(Let us cultivate our garden.)

—Voltaire (1694-1778), Candide (Ch. xx)

About the Author
Peter Koletzke is a technical director and principal instructor for the Enterprise e-Commerce Solutions practice at Quovera,
in Palo Alto, California, and has over 30 years of industry experience. Peter has presented at various Oracle users group
conferences around 320 times and has won awards such as Pinnacle Publishing's Technical Achievement, Oracle
Development Tools Users Group (ODTUG) Editor's Choice (three times), ODTUG Best Speaker, ODTUG Volunteer of the
Year, NYOUG Editor’s Choice (three times), and ECO/SEOUC Oracle Designer Award. He is an Oracle Certified Master,
Oracle ACE Director, and coauthor (variously with Dr. Paul Dorsey, Avrom Roy-Faderman, and Duncan Mills) of eight
Oracle Press development tools books including Oracle JDeveloper 11g Handbook.

