

 ADF Code Corner

003. Advanced Expression Language Techniques

Abstract:

Expression Language is a dot notated scripting

format that allows you to access in memory and Java

objects. In JavaServer Faces, you use Expression

Language to to bind UI components to managed

beans or to the Oracle ADF binding layer. Using EL

from a page or page fragment in Oracle JDeveloper

11g is as easy as opening the Expression Builder

dialog to select the object to reference. However,

usecases exist that need you to work with Expression

Language in Java. For example, developers that

create JavaServer Faces component instances

dynamically at runtime need to apply Expression

Language to the component to access the binding

layer to read or write data. This blog article focuses

on how to work with Expression Language in Java.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
21-MAY-2009

ADF CODE CORNER Advanced Expression Language Techniques

 2

Introduction
Before getting started with the topic, using Expression Language in Java should be an exception.

There are use cases in ADF that require EL to be used in Java. For exmple, the "row" variable

that is used to populate a table with data is only accessible in EL. So to implement conditional

row formatting when the table renders, you must use EL to access the current row values.

Another usecase that requires EL in Java is to programmatically create a method binding on a

component.

Accessing the ADF binding layer from Expression Language also is not a good usecase. You

can access the binding layer from the BindingContext object, which provides a native Java

access.

This blog entry is a take out from the Oracle Press "Oracle Fusion Developer Guide: Building

Rich Internet Applications with Oracle ADF Business Components and ADF Faces" book that

Lynn Munsinger and I wrote for McGraw Hill.

Advanced EL techniques

There exist two types of expressions in EL value expressions and method expressions. Value expressions

address a bean property, expecting the provided expression to resolve to a valid pair of getter and setter

methods. Method expressions reference methods that are exposed on an EL accessible object.

The following classes are used when working with expressions from Java in JavaServer Faces

ELContext The ELContext class is used as an argument to the ExpressionFactory class methods to

create value and method bindings. It also exposes the ELResolver instance, which can be used to resolve

model properties.

JSF uses the ELResolver instance to resolve references like #{managedBean.firstname}. To access an

instance of ELContext from a managed bean in JSF, you use

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER Advanced Expression Language Techniques

 3

ExpressionFactory The ExpressionFactory class exposes the createValueExpression method to create

a Java handle to a value expression and the createMethodExpression method that creates a Java handle to

a method. The ExpressionFactory instance is accessible in JavaServer Faces as follows

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

Application jsfApp = fctx.getApplication();

ExpressionFactory exprFactory = jsfApp.getExpressionFactory();

How to programmatically create a component value reference

ADF Faces Rich Client components can be created dynamically in Java and added to a page. To bind the

component to the ADF binding layer, or to a managed bean property, a ValueExpression reference is

created for the value attribute of the component. The example below creates a new InputText field and

binds it to the “DepartmentName” attribute in the ADF binding layer. The Java import statements for

this example are listed for completeness

//imports

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.ValueExpression;

import javax.faces.application.Application;

import javax.faces.context.FacesContext;

import oracle.adf.view.rich.component.rich.input.RichInputText;

…

//create a new ADF Faces input text component instance

RichInputText inputText = new RichInputText();

inputText.setLabel("Department Name");

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

Application jsfApp = fctx.getApplication();

//create a ValueExpression that points to the ADF binding layer

ExpressionFactory exprFactory = jsfApp.getExpressionFactory();

ValueExpression valueExpr = exprFactory.createValueExpression(

 elctx,

 "#{bindings.DepartmentName}",

 Object.class

);

//add the expression to input text value property

inputText.setValueExpression("value",valueExpr);

//add the component to the PanelFormLayout to show in the page

getPanelForm().getChildren().add(inputText);

//refresh the container to show text field

AdfFacesContext.getCurrentInstance().addPartialTarget(getPanelForm());

How to programmatically access ADF binding values

Expression Language can also be used to access the ADF binding to read and write values, like it can be

used to access any other managed bean property. The example below accesses the “DepartmentId”

attribute binding of the ADF binding layer to read the current department id value.

ADF CODE CORNER Advanced Expression Language Techniques

 4

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

Application application = fctx.getApplication();

ExpressionFactory exprFactory = application.getExpressionFactory();

ValueExpression valueExpr = exprFactory.createValueExpression(

 elctx,

 "#{bindings.DepartmentId.inputValue}",

 Object.class);

oracle.jbo.domain.Number departmentId = null;

departmentId = (oracle.jbo.domain.Number) valueExpr.getValue(elctx);

Using ADF Business Components as a business service, the ADF binding reference returns

oracle.jbo.domain object types for attributes that use ADF Business Component special types like

Number, Date and DBSequence.

To write a value back to the binding layer, use the setValue method of the ValueExpression.

valueExpr.setValue(elctx, <object>);

Note: You can access the ADF binding layer without using EL. For this call BindingContext.getCurrent()

and getCurrentBindingsEntry(). You can then access all bindings by their ID. Personally, I prefer using

the BindingContext object as it means less code to write.

How-to programmatically create a command action reference

The example below shows how to dynamically create a command component in Java and reference a

method exposed on the ADF binding layer. The command button that is added executes the “Delete”

operation that exist on a View Object and that is exposed on the ADF binding layer of the current JSF

page. The binding layer definition, used in this example shows as follows

<action IterBinding="EmployeesView3Iterator" id="DeleteEmployee"

 InstanceName="HRAppModuleDataControl.EmployeesView3"

 DataControl="HRAppModuleDataControl" RequiresUpdateModel="false"

 Action="removeCurrentRow"/>

The action binding is defined with its id attribute set to “DeleteEmployee”. The “DeleteEmployee” string

is used to access the operation in the binding layer from Expression Language and execute it. The

managed bean Java code that creates and configures the command button shows as follows

//Create the ADF Faces command button

RichCommandButton deleteButton = new RichCommandButton();

deleteButton.setText("Delete");

//Use partial submit so the page is not fully reloaded

//when pressing the button

deleteButton.setPartialSubmit(true);

//Obtain handle to ExpressioFactory

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

Application jsfApp = fctx.getApplication();

ExpressionFactory exprFactory = jsfApp.getExpressionFactory();

//Create and add method expression that references the ADF

//binding layer to execute the operation

ADF CODE CORNER Advanced Expression Language Techniques

 5

MethodExpression methodExpr = null;

//create method expression that doesn’t expect a return type (null),

//and that has no parameters to pass (new Class[]{})

methodExpr = exprFactory.createMethodExpression(

 elctx,

 "#{bindings.DeleteEmployee.execute}",

 null,

 new Class[]{});

//add the expression to the button’s action attribute

deleteButton.setActionExpression(methodExpr);

panelForm.getChildren().add(deleteButton);

AdfFacesContext.getCurrentInstance().addPartialTarget(getPanelForm());

How-to programmatically create component listeners

Beside of using a method expression to define a reference to a command button action attribute, the same

can be used to reference listener implementations, like ActionListener or ValueChangeListener. Listener

methods that are configured in a managed bean take a single argument, which is an instance of the event

object, like ActionEvent and ValueChangeEvent, for the developer to work with. An ActionListener

method in a managed bean looks as follows

 public void handleButtonPressed(ActionEvent event){

 //add code here

}

To dynamically reference this action from an existing command component, or a newly created

component, use the following code below, assuming the handle to the command component instance is

“commandButton”

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

Application application = fctx.getApplication();

ExpressionFactory exprFactory = application.getExpressionFactory();

//Create method expression that expects an ActionEvent argument to

//be passed in

MethodExpression methodExpr = null;

methodExpr = exprFactory.createMethodExpression(

 elctx,

 "#{CustomBean.handleButtonPressed}",

 null,

 new Class[] {ActionEvent.class});

//Create a new ActionListener based on a method expression

MethodExpressionActionListener actionListener = null;

actionListener = new MethodExpressionActionListener(methodExpr);

//add listener to the commandButton instance

commandButton.addActionListener(actionListener);

Similar, to add a ValueChangeListener to an input component, like InputText, that invokes the

“handleValueChange” method in a managed bean to handle the value change event

MethodExpression methodExpr = null;

ADF CODE CORNER Advanced Expression Language Techniques

 6

methodExpr = exprFactory.createMethodExpression(

 elctx,

 "#{ CustomBean.handleValueChange}",

 null,

 new Class[] {ValueChangeEvent.class});

MethodExpressionValueChangeListener changeListener = null;

changeListener = new MethodExpressionValueChangeListener(methodExpr);

inputText.addValueChangeListener(changeListener);

The “handleValueChange” method signature in the managed bean looks as follows

public void handleValueChangeEvent(ValueChangeEvent event){

 //add code here

}

How-to access managed beans in Java using EL

If a managed bean method requires access to an instance of another managed bean then one option is to

reference the managed bean in a managed bean property. Another option is to reference the managed

bean instance using Expression Language, as shown below

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

Application jsfApp = fctx.getApplication();

ExpressionFactory exprFactory = jsApp.getExpressionFactory();

ValueExpression valueExpr = exprFactory.createValueExpression(

 elctx,

 "#{EmployeesBean}",

 Object.class);

EmployeesBean employees = (EmployeesBean) vExpr.getValue(elctx);

