

 ADF Code Corner

005. How-to bind custom declarative components to

ADF

Abstract:

 Declarative components are reusable UI components that

are declarative composites of existing ADF Faces Rich

Client components. Using declarative components in

JDeveloper 11, application developers can build their own

components from one to many existing JavaServer Faces

components. Usecases for which declarative components

make sense include special layout definitions built out of

nested existing layout components or frequently used user

dialogs. This how-to document explains how declarative

components are build in JDeveloper 11, how the

component can be configured to read its data from the

ADF binding layer and how partial page refresh (PPR) can

be used to conditionally refresh a declarative component.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
26-MAY-2008

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER How-to bind custom declarative components to ADF

2

Introduction
The sample workspace built for this how-to document shows a table that updates a declarative

component whenever the row currency changes. The declarative component shows the first

name, last name and mail information of the current user. Following this how-to document and

downloading the sample workspace you learn how to create and deploy declarative components,

how to use attribute bindings to reference the current row of a table and how to enable PPR for

declarative components.

Building and deploying a declarative Component

You create a declarative component as described in Shay Shmeltzer's online tutorial. To reuse a

declarative component, it needs to be deployed in an ADF Library that is created from its own project in

this example. The technology scope of this project is set to "ADF Faces".

On the project root, choose New from the context menu to access the Oracle JDeveloper New Gallery.

Under the JSF node, select the JSF Declarative Component option to start the wizard that leads you

through the initial component creation.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER How-to bind custom declarative components to ADF

3

Fill in the component template to provide a name for the component, UserInfo in this example, a file

name and package structure. The custom component is added as a tag library after deployment, which is

why you need to use the Add Tag Library button to define the library's name, namespace and prefix.

ADF CODE CORNER How-to bind custom declarative components to ADF

4

For the declarative component you can create attributes, facets and methods as needed. This can be done

later on as well using the property palette. Use attributes to pass data in from the outside to the declarative

components, which is what we use within this example. Use a facet for the application developer to be

able to add other components as child components to your declarative component. This option is useful

if your declarative component is a composite layout container you created to enforce a consistent layout

for a specific functionality in a JSF page. Similar, you use methods to map action command contained in

the declarative component to a method accessible through Expression Language on the containing page.

ADF CODE CORNER How-to bind custom declarative components to ADF

5

Once the declarative component is configured and shows in the visual editor of Oracle JDeveloper 11,

you can use the property palette to further edit or add facet definitions, attributes and methods. The

screenshot below shows the property palette as it is current in Oracle JDeveloper 11 TP4. The property

palette's look and feel will change in releases after TP4, though the exposed information remains.

ADF CODE CORNER How-to bind custom declarative components to ADF

6

For this example, I created a panel box with 3 text fields to show the user information. I could have

added a submit button to perform updates to the data as well. Selecting a text field in the visual editor - or

the structure window - allows you to use the Expression Builder from the property palette to map the

component's value property with one of the defined attributes. Any change to the attribute's value from

then on shows in the text field as its value.

ADF CODE CORNER How-to bind custom declarative components to ADF

7

As you see, the defined attributes show under the attrs node of the JSP Object node for easy access.

Select an attribute and press the Insert button or double click onto the attribute to build the Expression

Language reference to it.

Once the declarative component is done, double click onto the project node, or choose Properties from

the context menu, to open the project's properties. Choose the Deployment node to create a new

deployment profile, which you set to be of type ADF Library JAR file.

ADF CODE CORNER How-to bind custom declarative components to ADF

8

After deploying the library, you'll find the generated JAR in the deploy directory of the declarative

component project. At least for Oracle JDeveloper 11 TP4, make sure that the deploy directory is within a

path that does not contain a blank character or copy the generated JAR file to a directory that doesn't

contain one. This restriction will be addressed in a later version of Oracle JDeveloper 11.

That is all what it takes to build a new declarative JavaServer Faces component, ready to be used in a web

application project. The really nice to say about declarative components is that it allows you to create

reusable building blocks for your personal application development the easy way without copy and pasting

code snippets between projects.

Adding a declarative component to a JSF page

To add a declarative component to the Oracle JDeveloper web project, you need to import the created

ADF Library jar file and the contained tag library. While this can be done through the Manage Libraries

option of the Tools menu, there is an even more elegant option, which is to build a new IDE connection

to a directory on the file system. Using an IDE connection you create a resource catalog reference that

allows you to easily browse and search for existing declarative components to add them to the project.

ADF CODE CORNER How-to bind custom declarative components to ADF

9

Following the instructions shown in the image above (Use View | Resource Palette to open the

resource catalog window), you create a new File System connection by clicking onto the Create folder

icon and choosing New Connection from the context menu.

ADF CODE CORNER How-to bind custom declarative components to ADF

10

Create a new IDE connection and point the directory path to the directory that contains the ADF library

file for the declarative component you just created. You can test the connection to ensure no typo

prevents accessing the resources.

Select the web application project and expand the File System node. It shows a sub node with the name

of the create IDE connection name. Below this node you find the deployed declarative component JAR

file entry. Select it and choose Add to Active Project from the context menu to add the library to the

current web application project.

ADF CODE CORNER How-to bind custom declarative components to ADF

11

Soon after the ADF library gets imported in Oracle JDeveloper, a new node shows in the Component

Palette for you to add the contained declarative components to the web application project.

Note that in this example, the user info panel appears read only, which means that no additional ADF

Faces components can be added to it. This is because the example uses attributes to pass data in, but no

facets to add nested components. If you want to allow developers to add ADF Faces components to your

declarative component, in which case your declarative component becomes the parent of the added

component, you need to add a facet to the declarative component.

ADF CODE CORNER How-to bind custom declarative components to ADF

12

The really cool feature of declarative components is that selecting the declarative component in Oracle

JDeveloper, using the visual editor or the Structure window, the property inspector (ctrl+shift+P) exposes

the defined attributes and methods as properties. In above image the FirstName, LastName and Mail

attributes are exposed in the property inspector.

Databinding declarative components

While you could have added hard coded values to the exposed attribute properties of the declarative

component, using a Expression Language string to look up the ADF binding layer is closer to what your

requirements would be in a production environment.

In the example provided with this document, the web page consists of a splitter component, with an ADF

bound table added to the first splitter area. A page definition file exists and we navigate to this fie to add

additional attribute bindings that are then referenced by the declarative component.

Note that the table binding uses a single node tree binding, which is bound to the EmployesView1

iterator. Selecting a row in the table always sets this row as the current row in the underlying iterator. The

action performed for this uses partial page rendering (its doing the Ajax thing if you want to see it this

way), which means that no page reload is required for this. All that we need to wire up the declarative

component properties to the current row in the iterator is to create a "window" to the current row. This

"window" is built through attribute bindings that expose a single attribute to the binding layer.

ADF CODE CORNER How-to bind custom declarative components to ADF

13

After creating attribute bindings for the the FirstName, LastName and Email attribute or the ViewObject,

you are good to bind the declarative component's exposed properties to ADF. For this you use the

property palette and choose Expression Builder from the context menu (click onto the black triangle

icon).

ADF CODE CORNER How-to bind custom declarative components to ADF

14

It is important to node that you bind the attributes to the attribute binding's inputValue property. To use

the attribute binding itself is a frequent error among application developers that use ADF. Data is

accessed through the inputValue property of the attribute binding.

ADF CODE CORNER How-to bind custom declarative components to ADF

15

Once all of the declarative component's attribute are bound to attribute bindings in ADF, your are done

with this part of the job. All that is missing is to ensure the declarative component gets refreshed as soon

as the row currency of the table changes.

Enabling declarative components for Partial Page Rendering

Declarative components themselves don't provide a partial page refresh property that you can set to the

ID value of a triggering component. However, you can wrap the declarative component with a

component that does support PPR. In this example I surrounded the declarative component with a

PanelGroupLayout component to then reference the table's ID property form the Partial Trigger

property.

You can choose any layout container as a wrapper for the declarative component.

ADF CODE CORNER How-to bind custom declarative components to ADF

16

You can use the Edit option of the wrapper component's Partial Trigger Property to browse the page's

component tree for the component that triggers the refresh. Note that this approach is less error prone

than typing the ID reference in directly because chances are that the triggering component itself is

wrapped in a container, like panelCollection in the table case.

While you can define the ID property for the table component within this working step, note that because

of a refresh problem in Oracle JDeveloper 11 TP4, you will have to run the dialog twice to get the EL

ADF CODE CORNER How-to bind custom declarative components to ADF

17

reference created. In this case it is better to define the table's ID property before opening the Expression

Language builder on the partial trigger property of the panelGroupLayout.

This is it then. At runtime, changing the row selection in the table now will update the declarative

component.

Running the Sample

Running the provided example against the HR sample schema shows the following screen.

ADF CODE CORNER How-to bind custom declarative components to ADF

18

Download Sample Workspace

The example workspace used in this how-to document is provided on the ADF Code Corner website:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Edit the connection property to meet your HR data schema configuration: Download Here

RELATED DOCOMENTATION

 Declarative Components – Product Documentation

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_reuse.htm#CACBFGFC

 Oracle Fusion Developer Guide – McGraw Hill Oracle Press, Frank Nimphius, Lynn Munsinger

http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

