

 ADF Code Corner

012. How-to copy/paste the value of a table cell to

other - selected - table rows

Abstract:

 This blog article describes the solution to a very specific
customer problem and requirement (aka. use case) to
copy the value of a table cell to the same column in
multiple selected table rows. The idea behind this use
case is to enable application users to bulk update status
information by copying an existing status information. The
problem description is a good example for a client side
JavaScript solution as there is no native API in ADF Faces
tables to detect the selected table cell. In addition, though
the sample works perfectly fine with ADF Business
Components models, the solution is implemented with a
POJO model to mimic the customer environment and to
increase the amount of samples Oracle provides in this
area.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
01-JUN-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

2

Introduction
The use case covered in this ADF Code Corner article is best explained by a series of screen

shots showing the final runtime beavior. The Oracle JDeveloper 11.1.1.3 workspace for this

example is provided for download at the end of this article.

1. To bulk update selected table rows, the application user selects an editable table cell to copy

the value from

2. With the right mouse button pressed, a context menu opens to copy the cell value. The context
menu is defined using ADF Faces components and JavaScript. It cancels the context menu
action to suppress the browser native functionality. The table cell renderer components
are af:inputText components with an af:clientListener defined to open the menu.

Hint: Alternatively to using the context menu, the user can press ctrl+shift+c to copy the cell
content. The implementation for this is through another af:clientListener that looks at the
keyboard code and the key modifiers pressed using the ADF Faces client side APIs.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

3

3. Now the user can ress the ctrl key and click on all the rows rows he or she want to copy the
values to. The implementation is such that when copying the cell value, the column is
remembered as well, so that when pasting it to other rows, values are added to the right column.

Hint: The functionality can be easily extended to copy and paste the values of multiple columns.
All you need to do on the page source is to add additional column names (atributes) to the
colname af:clientAttribute tag, which we explore in a minute

4. To paste the values, the user opens the context menu with the right mouse button and chooses
the paste option.

Hint: Instead of the context menu, the user could use the ctrl+shift+v keyboard combination to
paste the value to the selected table rows.

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

4

5. As shown in the image below, the cell value is copied to the selected table rows. But there is
more than what meets the eyes. The logic of copying the data is implemented on the server side,
with the help of an af:serverListener component. The server side implementation updates the
ADF binding layer for the selected rows and - optionally - can be used to update the business
service as well, which especially in non-ADF Business Components cases require an extra
function to be called.

At the end, the table is PPR'ed to show the copied values in the selected table rows. Of course,
the implementation could have been client side only, but this would go with a lot more JavaScript
coding. Because tables in ADF Faces are stamped its in fact easier to perform the value
operations on teh server and accept the little twinkle when refreshing the table.

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

5

Note:Though JavaScript is mainstream with Ajax, I recommend to use it by exception and only in
small doses. In traditional web developments, JavaScript has proven as a silver bullet. However,
if you want to play it safe, prefer mature, solid and typed Java programming interfaces whenever
you can to ensure browser and upgrade compatibility for your applications.

Here's a list of topics you learn about if you continue reading this article:

 af:clientListener, af:serverListener usage

 how to detect which table a user selected

 using JavaScript callbacks in af:clientListener to pass additional arguments

 how to create keyboard shortcuts (ctrl+shift+c and ctrl+shift+v), optionally overriding the
browser defaults

 The use of DCDataRow vs. oracle.jbo.Row

Note: In a previous article, I explained pagination in POJO based DataControls. This sample too
uses pagination to not fetch all data at once.

Note: I added comments to the source code printed in this article and contained in the sample
workspace. Make sure you read the comments for a better understanding of what is going on.

Setting-up the table

Users select a table cell to copy the value from. The ADF Faces table is stamped, which means that a cell

is not an object that one can ask for what column and table row it belongs to. So to get this information

at runtime, a little trick using an af:clientAttribute is needed to provide this information at design time .

The af:clientAttribute component allows developers to enhance ADF Faces component instences with

additional - custom defined - properties. The table in the example has two af:clientAttribute tags, one for

the column name (the attribute name it represents, not the column label) and one for the row number

(the row index).

As you see in the image below, the client attributes are defined as a child of the af:inputText components

that make the cell renderer. The client attribute for the column name is called "colname" (a name I came

up with) and references the binding layer through the "tableRow" variable. The "tableRow" variable is

defined on the table and is used to temporarily hold the current rendered table row when iterating over

the CollectionModel to print the table. By default the variable name is set to "row". I changed it to

"tableRow" to make it more explicit what the role of this is.

The "colname" value is read from the ADF binding layer, through the tableRow variable. By accessing the

binding layer for the column name, I make the page sources independent from the business service

accessed by the binding. On the client side, from JavaScript, the client attribute value can be accessed by

<component>.getProperty('colname').

file:///D:/pojopagination/index.html

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

6

The client listeners on the Input Text components are used to respond to the right mouse button click

and the keyboard. When the user clicks on a text field using the right mouse button, a popup dialog is

opened and aligned with the selected table cell. You can't do this alignment with the

af:showPopupBehavior tag, which is why a pure JavaScript approach is taken. The keyboard listener

calls a JavaScript function for each key pressed. The JavaScript function then checks if the pressed key is

"c" or "v" in combination with ctrl+shift. If any other keyboard key or key combination is pressed, the

JavaScript function doesn't do anything and lets the event bubble up for the browser to handle. If the key

ctrl+shift+c or ctrl+shift+v is detected, then the JavaScript function cancels the event and copies or

pastes the cell value.

Important: For ADF Faces components to be come accessible in JavaScript on the client, the

clientComponent property must be set to "true" or an af:clientListener tag must be added. Otherwise,

most likely, the component renders in HTML in which case it is "invisible" for the client side ADF Faces

framework. But wait ! Before you set clientComponent="true" for all components on a page, keep in

mind that the decision not to generate JavaScript objects for all components on a page is by design and

for better performance. So please, curve your enthusiasm and think twice before enabling this option.

However, forgetting to set clientComponent to true is the most common mistake developers do when

using the client side AD Faces JavaScript framework.

Below is the page source of a table column, which is configured for copy and paste support. The

interesting code lines are highlighted in bold. Please notice the use of the "status" variable that is the value

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

7

of the table varStatus attribute. The "status" variable is used to display row numbers in front of the table

but also as the value of the "rowKey" client attribute to identify the row a selected table cell component is

in.

<af:table value="#{bindings.allEmployees.collectionModel}"

 var="tableRow" rowBandingInterval="0" id="t1"

 binding="#{EmployeesPage.employeeTable1}"

 rowSelection="multiple"

 rows="#{bindings.allEmployees.rangeSize}"

 emptyText="#{bindings.allEmployees.viewable ?

 'No data to display.' : 'Access Denied.'}"

 fetchSize="#{bindings.allEmployees.rangeSize}"

 varStatus="status"

 contentDelivery="whenAvailable" editingMode="editAll">

 <!-- the rows below are commented out from the table definition to allow multiple

 table row selection. The ADF binding layer can only have a single current

 row and therefore would reset multiple row selection on table refresh.

 selectedRowKeys= "#{bindings.allEmployees.collectionModel.selectedRow}"

 selectionListener= "#{bindings.allEmployees.collectionModel.makeCurrent}"

 -->

 <af:column id="c5" width="31" headerText="No." rowHeader="true">

 <af:outputText value="#{status.index}" id="ot1"/>

 </af:column>

 <af:column sortProperty="employeeId" sortable="false"

 headerText="#{bindings.allEmployees.hints.employeeId.label}"

 id="c1" width="209">

 <af:inputText value="#{tableRow.bindings.employeeId.inputValue}" label="#{bindings.allEmployees.hints.employeeId.label}" required="#{bindings.allEmployees.hints.employeeId.mandatory}"

 columns="#{bindings.allEmployees.hints.employeeId.displayWidth}" maximumLength="#{bindings.allEmployees.hints.employeeId.precision}"

 shortDesc="#{bindings.allEmployees.hints.employeeId.tooltip}"

 id="it1" clientComponent="true"

 autoSubmit="false">

 <f:validator binding="#{tableRow.bindings.employeeId.validator}"/>

 <af:convertNumber groupingUsed="false"

 pattern="#{bindings.allEmployees.hints.employeeId.format}"/>

 <af:clientListener method="openPopup('pc1:p1')"

 type="contextMenu"/>

 <af:clientListener

 method="copyFromKeyboard('ServerCopy','pc1:p1')"

 type="keyDown"/>

 <af:clientAttribute name="colname"

 value="#{tableRow.bindings.employeeId.name}"/>

 <af:clientAttribute name="rwKeyIndx" value="#{status.index}"/>
 <!-- popup is in PanelCollection 'pc1' with an ID of 'p1' -->

 </af:inputText>

 </af:column>

...

With this table configuration, a JavaScript function is called when the right mouse button is used on a

table cell and when users press a keyboard key. The client attributes provide information about the "where

in the table" users clicked into. Note that the client listener methods have string arguments that define the

name of the af:serverListener component to call a managed bean method and the client id of the popup

component to launch.

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

8

JavaScript Handlers

At a first glance, the JavaScript below looks like a lot of code to write for a little functionality. However,

as you will see when I go through it, most of what you see are comments I added for you to get a better

understanding of what a specific code line is doing.

The JavaScript source is referenced from the ADF Faces page using the af:resource component, as

shown below

<af:resource type="javascript" source="/jshelper.js"/>

"The resource is added to the af:document component to be included when the document is rendered. The resource is only

processed on the initial creation of the document. Only JSP tags may be used in the body, no JSF components are supported,

or deferred EL expressions as the value is processed during tag execution, not during component tree rendering. If the source

attribute is not given, the content of the tag is used for in-line CSS style or JavaScript, otherwise the source attribute is used

as the URI to the resource. af:resource must be a descendent of af:document." --- (from the tag documentation)

The JavaScript has two global variable defined, which are used as a temporary memory scope for the

selected table cell content. The globalFieldCopy variable holds the inputText component instance of the

table cell to copy from. The globalLastVisitedField variable keeps track of the last visited table cell

component. This variable is copied into the globalFieldCopy variable whenever the user selected context

menu action is COPY.

The openPopup(popupId) function uses a JavaScript callback mechanism to receive a user defined

argument, the id of the popup to lookup and open, as well as the ADF Faces event object. JavaScript

callbacks are a great help when the goal is to write reusable code that could be saved in a JavaScript

library. Similar to ADFUtils and ADFFacesUtils, the two helper classes used within Oracle sample

applications like Fusion Order Demo (FOD) , you could build a JSUtils as well. The popup is opened in

response to a context menu event, which also allows access to the table cell component. This component

reference is copied into the globalLastVisitedField variable. The popup then reads the clientId of the

table component, which is the absolute component locator id (kind of the address a component has in the

rendered table), to then provide this as the alignId for the context menu to open next to the selected table

cell.

The copyFromKeyboard method handle the ctrl+shift+c and ctrl+shift+v keyboard short cuts to

copy and paste the selected cell value. As an additional argument, it needs the id of the af:serverListener

and the component Id of the component that owns the server listener. Interesting for you to read in this

function is the way the ADF Faces client side framework supports developers to detect keyboard strokes

and the pressed keyboard modifiers through its AdfKeyStroke class..

The copyFromMenu function is called when a user clicks the "Copy" menu option and copies the value

held by the globalLastVisitedField into the globalFieldCopy variable.

The pasteFromMenu function is called when the user selects the "Paste" option from the context menu

and calls, like copyFromKeyboard in the "Paste" case, calls the copyValueToSelectedRows function.

The copyValueToSelectedRows function is called from both "Paste" functions (the menu and the

keyboard) and uses the af:serverListener to queue a custom event to the server. The information that is

passed from the client to the server contains the column name and the rowkey of the table cell to copy

the value from. Another information that may be useful on the server is the clientId of the cell renderer

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

9

component that you can get by calling getClientId() on the JavaScript component handle. A use case for

passing the clientId is to explicitly set the focus back on the selected component, which is not required in

the sample provided with this article.

/*

 * A global variable that holds the cell handler of the table cell that

 * we want to copy to other rows

 */

var globalFieldCopy = null;

var globalLastVisitedField = null;

/*

 * Function is called to open a context menu dialog next to the

 * selected table cell. It also saves the selected text field

 * component reference for later use when pasting the value to

 * selected table rows

 */

function openPopup(popupId){

 return function(evt){

 evt.cancel();

 //get the field reference to copy value from

 txtField = evt.getSource();

 //just temporarily remember the field that had focus

 //when the popup menu opened. This is to ensure that

 //fields are only copied when the Copy context menu

 //option is used

 globalLastVisitedField = txtField;

 //the context popup menu should be launched in the table next

 //to the selected table cell. For this we need to get the cell

 //handler component's clientId

 var clientId = txtField.getClientId();

 //search popup from page root

 var popup = AdfPage.PAGE.findComponentByAbsoluteId(popupId);

 //align popup so it renders after the textfield

 var hints = {align:"end_before", alignId:clientId};

 popup.show(hints);

 }

}

/*

 * As an alternative - and probably more convenient option to

 * copy and paste cell values to other rows - we provide a keyboard

 * option to use instead of the context menu.

 *

 * ctrl+shift+c copies the field to copy the value from.

 * ctrl+shift+v copies the saved value to all selected fields

 *

 * The serverListenerId argument is the name of the af:serverListener

 * component. The serverListenerOwnerComponentId is the ID of the UI

 * component that has the server listener defined as a child component.

 */

function copyFromKeyboard(serverListenerId,

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

10

serverListenerOwnerComponentId){

 return function(evt){

 //the keyboard event gives us the keycode and the modifier keys the

 // user pressed

 var keyPressed = evt.getKeyCode();

 var modifier = evt.getKeyModifiers();

 //copy if ctrl+shift key is pressed together with the c-key

 var shiftCtrlKeyPressed = AdfKeyStroke.SHIFT_MASK |

 AdfKeyStroke.CTRL_MASK;

 if (modifier == shiftCtrlKeyPressed){

 if(keyPressed == AdfKeyStroke.C_KEY){

 //copy the selected field to paste values from

 globalFieldCopy= evt.getSource();

 //cancel keyboard event

 evt.cancel();

 }

 //paste

 else if(keyPressed == AdfKeyStroke.V_KEY){

 if(globalFieldCopy == null){

 //no value copied

 alert("No value copied. Please copy value first:

 Use ctrl+shift+c");

 evt.cancel();

 }

 else{

 //handle paste

 copyValueToSelectedRows(serverListenerId,

 serverListenerOwnerComponentId);

 evt.cancel();

 }

 }

 }

 }

}

//Function referenced from the clientListener on the copy menu option

function copyFromMenu(evt){

 //copy the last visited field to the variable used to copy values

from. This

 //step is required to ensure the field is available when copy is

invoked from

 //popup

 if(globalLastVisitedField != null){

 globalFieldCopy = globalLastVisitedField;

 }

 else{

 alert("Problem: No field could be identified to be in focus");

 }

 //cancel keyboard event

 evt.cancel();

 }

//Function referenced from the clientListener on the copy menu option

 function pasteFromMenu(serverListenerId,

serverListenerOwnerComponentId){

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

11

 return function(evt){

 if(globalFieldCopy == null){

 //no value copied

 alert("No value copied. Please copy value first");

 evt.cancel();

 }

 else{

 //handle paste

 copyValueToSelectedRows(serverListenerId,

 serverListenerOwnerComponentId);

 evt.cancel();

 }

 }

 }

/*

 * Function that queues a custom event to be handled by a

 * managed bean on the server

 * side. Note that having the copy and paste action handled

 * on the server is more

 * robust than doing the same on the client.

 */

function copyValueToSelectedRows(serverListenerId,

serverListenerOwnerComponentId) {

 var txtField = globalFieldCopy;

 //get the name of the column which row cell to read and write to

 var column = txtField.getProperty('colname');

 //get the index of the row to copy values from

 var rowKeyIndx = txtField.getProperty('rwKeyIndx');

 var submittedValue = txtField.getSubmittedValue();

 var serverListenerHolder = AdfPage.PAGE.findComponentByAbsoluteId

 (serverListenerOwnerComponentId);

 AdfCustomEvent.queue(

 //reference the component that has the server listener

 //defined.

 serverListenerHolder,

 //specify server listener to invoke

 serverListenerId,

 // Send two parameters. The format of this message is

 //a JSON map, which on the server side Java code becomes

 //a java.util.Map object

 {column:column, fieldValue:submittedValue, rowKeyIndex:rowKeyIndx},

 // Make it "immediate" on the server

 true);

 //reset field value

 globalFieldCopy = null;

 }

Hint: A useful tool when programming JavaScript is the Firebug plugin in Firefox, which is a rock star

when it comes to debugging. Even if you are deploying on IE for production, Firefox is a must have

during development just for Firebug.

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

12

The use of af:serverListener and the managed bean calls

The server listener component allows developers to call server side Java from JavaScript on the client. In

this example, the server listener calls the copyValueToSelectedRows method, passing the rowkey and

the column name of the table cell to copy from. The method then reads the table cell value from the ADF

Faces table to then iterate over the selected table rows to update the row attribute with the copied value.

Optionally, and only when the business service is not ADF Business Components, you may call a merge

or persist function to save the value changes in the business service.

The real work, the update of the table rows, is done in the private updateSelectedTableRows method.

At the end of the method, a partial refresh is executed to show the updated table rows. Note that tables in

ADF Faces are stamped so there is no way to just refresh the updated table rows. Interesting in the

updateSelectedTableRows method is the use of DCDataRow, which may look strange for the ADF

Business Components developers among the readers, because they are used to cast the ADF iterator rows

to oracle.jbo.Row. DCDataRow is the implementation independent alternative and can be used with any

DataControl, which is a benefit if you develop application code that is for reuse on other projects, which

may not use ADF Business Components as a business service. Both, oracle,jbo.Row and DCDataRow

extend RowImpl and expose the same set of common methods.

import java.util.Iterator;

import java.util.List;

import oracle.adf.model.BindingContext;

import oracle.adf.model.bean.DCDataRow;

import oracle.adf.model.binding.DCBindingContainer;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.adf.view.rich.render.ClientEvent;

import oracle.binding.OperationBinding;

import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.RowKeySet;

/**

 * Bean that handles the POJO model update

 */

public class EmployeesPageBean {

 private RichTable employeeTable1;

 public EmployeesPageBean() {

 }

 public void setEmployeeTable1(RichTable employeeTable1) {

 this.employeeTable1 = employeeTable1;

 }

 public RichTable getEmployeeTable1() {

 return employeeTable1;

 }

 /**

 * Method called from the serverListener on the page. The

 * values that are passed by the ClientEvent object is

 *customizable and in this sample include the row index and

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e10653/oracle/adf/model/bean/DCDataRow.html

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

13

 * the cell attribute name to copy and paste values from. You

 * could also pass the component clientId so that the managed

 * bean e.g. could set the focus back if needed

 * @param ce - Event object passed from the client to the server

 * through the af:serverListener. The event objectcontains the

 * message payload and a reference to the source invoking

 * the server listener.

 */

 public void copyValueToSelectedRows(ClientEvent ce){

 String columnToUpdate = (String)

 ce.getParameters().get("column");

 RichTable table = this.getEmployeeTable1();

 //important: to avoid an exception in the RowChangeManager, you

 //need to copy the current row key and keep it in a local

 //variable

 Object oldKey = table.getRowKey();

 try {

 //get the row index of the table cell to copy from

 int rowKeyIndex =

 ((Double)ce.getParameters().get("rowKeyIndex")).intValue();

 //call a private method to update the selected rows

 updateSelectedTableRows(columnToUpdate, rowKeyIndex);

 }

 catch(Exception e){

 e.printStackTrace();

 }

 finally {

 //whatever happened, set the current row back to the copied

 //rowkey. This is needed for the RowManager to work in ADF

 //Faces tables

 table.setRowKey(oldKey);

 }

 }

 /**

 * Method that identifies the table row to copy the cell value from

 * to then copy the value to all selected table rows. Optionally,

 * at the end of ths method you then update the POJO model (which

 * is an action not required if you use ADF BC because the binding

 * layer is updated and within the next submit automatically

 * updates the ADF BC model. However, this sample uses a POJO model

 * and as such we perform the update

 * @param column The attribute name to copy the values

 * from and paste them to

 * @param rowKeyIndex the row index of the ADF binding row to

 * copy from. This is used

 * if you want to copy the values from the

 * ADF binding layer and not use the value

 * from the browser client. Its also the

 * default in this

 * sample.

 */

 private void updateSelectedTableRows(String column, int rowKeyIndex){

 RichTable table = this.getEmployeeTable1();

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

14

 /*

 * 1. Get access to the copied cell data. This information

 * can be accessed directly on the ADF Faces table or

 * through the binding layer.

 */

 //set current table row to copy source

 table.setRowIndex(rowKeyIndex);

 JUCtrlHierNodeBinding rowBinding =

 (JUCtrlHierNodeBinding) table.getRowData();

 /* DCDataRow extends ViewRowImpl, which extends RowImpl that is

 used with ADF BC View Objects and Entity Objects. This means

 that DCDataRow is the class to use if your code needs to run

 with ADF BC and non-ADF BC business services

 */

 DCDataRow rowToCopyFrom = (DCDataRow) rowBinding.getRow();

 Object copyValue = rowToCopyFrom.getAttribute(column);

 //* END OF OPTIONAl

 /*

 * 2. Copy the data to the selected table rows. Here we have two

 * options: paste the value to the ADF Faces table or access

 the ADF binding layer (iterator).

 */

 RowKeySet selectedRowKeySet = table.getSelectedRowKeys();

 Iterator selectedRowKeySetIter = selectedRowKeySet.iterator();

 while (selectedRowKeySetIter.hasNext()){

 List key = (List) selectedRowKeySetIter.next();

 //make row current in table

 table.setRowKey(key);

 JUCtrlHierNodeBinding selectedRowBinding =

 (JUCtrlHierNodeBinding) table.getRowData();

 DCDataRow rowToUpdate =

 (DCDataRow) selectedRowBinding.getRow();

 //copy the value from one attribute to the current selected

 rowToUpdate.setAttribute(column, copyValue);

 /*

 * 3. So far we did update the ADF iterator, which is

 sufficient if you use ADF BC because of its active data

 model. Other business services expose methods to persist

 changes, which needs to be explicitly called.

 *

 * Note that you can only persist rows that are complete

 * and don't miss required values. In this sample, we

 * update existing rows only so that

 * it is safe to update.

 */

 BindingContext bctx = BindingContext.getCurrent();

 DCBindingContainer bindings =

 (DCBindingContainer) bctx.getCurrentBindingsEntry();

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

15

 //method to update the POJO model. Note that for

 //Pojo, EJB and WS models, you need to explicity calls

 //a method to merge (update) or persist (commit) objects

 OperationBinding mergeOperation =

 bindings.getOperationBinding("mergeEmployee");

 //Since we use POJOs we need to pass the "real" object,

 //which we get from the DataProvider of the row. The same

 //is required for Web Services, EJB/JPA etc.

 mergeOperation.getParamsMap().put(

 "emp",rowToUpdate.getDataProvider());

 //execute the method for update

 mergeOperation.execute();

 //any errors ?

 if(mergeOperation.getErrors().size() > 0){

 //print first error message

 System.out.println("An Error occured when updating row: " +

 mergeOperation.getErrors().get(0));

 }

 }

 //PPR the table to display copied values

 AdfFacesContext adffctx = AdfFacesContext.getCurrentInstance();

 adffctx.addPartialTarget(table);

 }

}

Download

You can download the Oracle JDeveloper 11g (11.1.1.3, also known as PS1 R2) sample workspace from

ADF Code Corner.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

No configuration is required as the model is POJO based and all data is contained in the model classes.

When the table is rendered, use the context menu or the keyboard combination ctrl+shift+c to copy a

value and the context menu or ctrl+shift.p to paste the value.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to copy/paste the value of a table cell to other -
selected - table rows

16

RELATED DOCOMENTATION

 af:resource tag -

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_resource.html

 AdfKeyStroke JS API -

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12046/oracle/adf/view/js/base/Adf

KeyStroke.html

 af:serverListener tag -

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

 DCDataRow - JavaDoc

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e10653/oracle/adf/model/bean/

DCDataRow.html

 “Oracle Fusion Developer Guide”, McGraw Hill – Oracle Press, Frank Nimphius, Lynn Munsinger

 Using JavaScript in ADF Faces applications -

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_event.htm#DAFEBFEE

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_resource.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12046/oracle/adf/view/js/base/AdfKeyStroke.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12046/oracle/adf/view/js/base/AdfKeyStroke.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_serverListener.html
http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_event.htm#DAFEBFEE

