

 ADF Code Corner

011. ADF Faces RC - How-to use the Client and

Server Listener Component

Abstract:

One of the most interesting features in Ajax is the ability of

an application to send user information to the server

without user recognition. A positive use of this feature is

the auto suggest feature, which provides the user with a

list of possible select values based on the user input into a

text field. Another positive use is auto completion of

strings, in which case the user enters a shortcut into a text

field e.g. "NY" for the system to complete the field with

New York. This how-to document shows how this Ajax

functionality is achieved in ADF Faces RC using the client

and server listener component.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
14-JUN-2008

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
ADF Faces RC - How-to use the Client and Server
Listener Component

 2

Introduction
In this how-to example, we explore a negative use of the Ajax asynchronous messaging

functionality, which is the ability of an application to spy on the user input.

Before you can shout "security breach", let me reassure that this application doesn't cause any

harm. I just chose this example because its cool. The sample code, as usual, can be downloaded

at the end of this how-to document.

The sample application consist of two text fields that each intercepts the user input to send it to the server

as the user types. The difference between the fields is that the first field has the functionality configured at

designtime, whereas the second has it configured dynamically through a managed bean. The latter thus

allows you to provide this functionality dynamically: your application may contain a checkbox that if

checked provides text auto completion as otherwise it wont.

As soon as the user types into one of the fields, the characters are send to the server where they can be

accessed from a managed bean method.

Configuring a clientListener and serverListener at designtime

At designtime you use the following artifacts to configure asynchronous messages to be send to the server

 af:clientListener

 af:serverListerner

 JavaScript method called by the client listener

<af:document>

 <f:facet name="metaContainer">

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
ADF Faces RC - How-to use the Client and Server
Listener Component

 3

 <af:group>

 <![CDATA[

 <script>

 function clientMethodCall(event) {

 component = event.getSource();

 AdfCustomEvent.queue(component,

 "customEvent",

 {payload:component.getSubmittedValue()},

 true);

 event.cancel();

 }

 </script>]]>

 </af:group>

 </f:facet>

 <af:form>

 <af:panelFormLayout>

 <f:facet name="footer"/>

 <af:inputText label="Let me spy on you: Please enter your

 mail password">

 <af:clientListener method="clientMethodCall" type="keyUp"/>

 <af:serverListener type="customEvent"

 method="#{customBean.handleRequest}"/>

 </af:inputText>

...

The af:clientListener calls the JavaScript method on the page whenever the keyUp JavaScript event occurs

on the text field. The JavaScript function then gets a hold onto the event source, the text field, to read its

submitted text value. The text then is passed to the server listener, which listens under the name of

"customEvent".

The bean method, which is mapped by the serverListener component, is customBean.handleRequest:

 public void handleRequest(ClientEvent event){

 System.out.println("---"+event.getParameters().get("payload"));

 }

ADF CODE CORNER
ADF Faces RC - How-to use the Client and Server
Listener Component

 4

The managed bean can be configured either in the faces-config.xml file or the adfc-config.xml file, which

is the Oracle taskflow configuration. All that the method does in the above example is to print out the

user entered values. However, as you see you can access the payload by requesting it as a parameter on the

event object passed into the method. Note that the term "payload" is arbitrarily chosen by me. You are

free to choose whatever name pleases you.

Configuring a clientListener and serverListener at runtime

To apply a client and server listener dynamically, an additional step is required, which is to create a

binding reference of the text field to the managed bean that adds the listeners to it.

<af:inputText label="I am a spy too!"

 binding="#{customBean.secondSpyField}"/>

As you can see. the definition of the text field doesn't contain the clientListener and serverListener

elements, but instead has the binding property set to the managed bean. To add the client and server

listener on page load, the following code in the managed bean is required

public void setSecondSpyField(RichInputText secondSpyField) {

 this.secondSpyField = secondSpyField;

 if (this.secondSpyField!=null){

 ClientListenerSet cls = new ClientListenerSet();

 cls.addListener("keyUp","clientMethodCall");

 cls.addCustomServerListener(

 "customEvent",

 getMethodExpression("#{customBean.handleRequest}"));

 this.secondSpyField.setClientListeners(cls);

 }

 }

ADF CODE CORNER
ADF Faces RC - How-to use the Client and Server
Listener Component

 5

 public RichInputText getSecondSpyField() {

 return secondSpyField;

 }

 public MethodExpression getMethodExpression(String s){

 FacesContext fc = FacesContext.getCurrentInstance();

 ELContext elctx = fc.getELContext();

 ExpressionFactory elFactory =

 fc.getApplication().getExpressionFactory();

 MethodExpression methodExpr =

 elFactory.createMethodExpression(elctx,s,null,new

 Class[]{ClientEvent.class});

 return methodExpr;

 }

Within the setter of the text field binding, the two listeners are added. The JavaScript function that

handles the client method call is assumed to be on the page. There are ways to dynamically add JavaScript

to a page using the extended renderkit service, but for this example we assume the JavaScript function to

exist.

The key for making the dynamic approach work is within the getMethodExpression function. When

building the method expression you need to tell the method's input arguments, which in the case of the

server listener is of type ClientEvent.

Download

You can download the sample explained in this article from the ADF Code Corner site:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

RELATED DOCOMENTATION

 af:clientListener -

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_clientListener.html

 af:serverListener -

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_clientListener.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

